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Phase synchronization of coupled Ginzburg-Landau equations
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The occurrence of phase synchronization of a pair of unidirectionally coupled nonidentical Ginzburg-Landau
equations is demonstrated and characterized using cyclic and extended phases. Furthermore, it is shown that
weak coupling first leads to frequency synchronization and later to phase synchronization. For strong coupling
there is evidence for generalized synchronization.

PACS numbds): 05.45.Xt

Synchronization of periodic signals is a well-known phe-the complex variable may occur resulting in spatiotemporal
nomenon in science and engineering. However, even chaotithaotic dynamics. In our investigations the parameters of the
systems may be linked in a way such that their chaotic osdriving systema=2.0 andg3,=0.7 are chosen to be in the
cillations are synchronizeld —3]. If a pair of very similar or phase turbulent regin{see Fig. 18)]. In order to study non-
even identical systems is coupled one may obsgtertical  jdentical systems we have chosen for the response system the
synchronizatiorwhere the difference of the state vectors of sgmeq value but different3 values.3,=0.9 results in more
both systems converges to zero, even in the case of chaotigrhylent phase dynamics amg=1.05 leads to defect tur-
dynamics. Such synchronization phenomena may not only bgylencesee Fig. {b)]. All calculations were performed for a
observed for low-dimensional systems but also for spatiallffixed system length.=100. The PDE was solved using an
extended dynamic$4—6]. Identical synchronization, how- jmplicit scheme that is second order in space and first order
ever, can only occur for pairs of identical systems but not foli time.
coupled systems that are of completely different origimy., To examine PS one has to find a suitable quantity that
an electrical circuit coupled to a mechanical systewihat  represents a phase of the system and that usually corresponds
does “synchronization” mean in such a more general casef a zero Lyapunov exponent. Even in low-dimensional sys-
Periodic systems are usually called synchronized if eithefems this is often a nontrivial problem. The advantage of
their phases or frequencies are locked. For chaotic systemgsing the GLE is that we have a complex variable that allows
however, the notions of “frequency” or “phase” are in gen- ys to use polar coordinates with a unique phase definition
eral not well defined, except for some class of chaotic sysy(x,t) e R. The coupled systemd) are regarded as phase

tems where a phase variable can be introduced and chaodgnchronized10] if their phase difference is bounded from
phase synchronizatioPS may be observeff]. Since(cha-  gpove[14]:

otic) PS turned out to be a rather robust phenomenon it was

also observed with binary coupliig] and in noisy environ- |bu(x,1)— b, (x,t)|<const; ¥xe[OL]Vt>T, (2
ments like magnetoencephalography measurenjdis In v
data analysigstatistical evidence for PS is used to evaluate
possible coupling between different physical processes lik
for example, the solar activity cyclsunspot numbeyswvith

whereT denotes the transient time. The mean frequency of
&he system can be defined as

the solar inertial motiof11]. Recently PS of spatiotemporal (B(x,))
chaos under harmonic forcing was observed and analyzed in Q= lim——%, (3
Chateet al.[12]. In this paper we demonstrate that PS may toee L

also occur with spatiotemporal chaos of coupled nonidentical
partial differential equation@PDES. As an example we have where ( ), is the spatial average. PS implies that the fre-
chosen a pair of unidirectionally coupled Ginzburg-Landauguency mismatch
equationgGLES9),
ou A | AQ=Q,-Q,=0 (4)
—=u—(1—ia)— +(1+iBy)|ul?u, xe[OL],
at x> of the mean frequencieQ, and(), vanishes and frequency
5 (1)  synchronization(FS) occurs. We want to stress that the op-
v ) ) posite is in general not true because of possitdes phase
E:U_(l_'“)y+(1+'ﬂ2)|”|zv+c(“_'))' slips where the relative phases change rapidly 9.
When a coupling parameter of the systems is changed one
with periodic boundary conditions. The GLE is a fundamen-often observes a scenario where first the mean frequencies
tal model for structure formatiofil3]. Depending on the synchronize(FS and later PS occur§.e., all phase slips
parametersr and 3 defect turbulencer phase turbulencef  disappeared Note that we consider here extended phases
@(x,t) on the whole real axi® for diagnosing PS, because
we are interested in the long term evolution of the phase
*Electronic address: junge@dpi.physik.uni-goettingen.de difference.
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FIG. 2. Relative phase differencé) vs coupling strength
¢=0.0,...0.15. The solid line corresponds @ = 1.05(defect tur-
bulence, the dashed curve t8,=0.9 (phase turbulenge Below
the dotted line the phase difference is less than @hich corre-
sponds to phase synchronization.

(b)

=0.9 (dashed curve The dotted line shows the boundr2
for PS. The phase difference decreases continuously for in-
creasing coupling strength For the case8,=0.9 (phase
turbulence a transition to PS occurs at=0.07 and with
B>=1.05 (defect turbulencethe onset of PS is at=0.11.

For visualization Fig. 1 shows the evolution of the amplitude
dynamics of(a) the driving systenB;=0.7, (b) the response
B,=1.05 without coupling(c) at the onset of PS, ar(d) for
strong coupling. Note, that in Fig(d) both PDEs are phase
synchronized while the amplitudes are totally uncorrelated.
For strong coupling, see Fig(d), even the amplitude pat-
terns become similar to each other.

Figure 3 shows the average frequency mismatch(Bx.
against the coupling strength As expected PS implies FS
and we observe a locking of the frequencies before perfect
phase locking is observed:

()

B,=0.90: ¢=0.06=FS, c=0.07=PS,
(6)

B,=1.05. ¢=0.10=FS, c=0.11=PS.

In this intermediate regime we observed phase slips that be-
long mainly to defects, but they occur so seldom that they

. . ) have a negligible effect on the mean frequey.

FIG. 1. Amplitude dynamics of the coupled Ginzburg-Landau An alternative way for detecting phase synchronization

equat_ions(a) drive P1=0.7, (b) response systeifi;=1.05 without [10,17] is to look for a pronounced peak in the distribution of
coupling, (c) weak coupling ofc=0.11, beginning of phase syn- the relative cyclic phase difference
chronization,(d) strong coupling ofc=0.2, strong correlation of '

the amplitude patterns.

25 7
To have a quantitative measure for PS in spatially ex- 20 3
tended systems we compute the maximum relative phase dif- 15 3
ference of the extended phasggs, , X 10 3
= E
Ap= max |¢u(x,t)=¢,(x,b)]. (5) S 5
xel, T<teR 3
0

-5 7 :

After a transient timé, we set the initial phase difference to -
| u(x,0)— ¢, (x,0)|<7 [9] and with perfect PS the phase 0.00 0.05 0.10 0.15
differenceA ¢ will not exceed the bound of 2.

Figure 2 shows the maximum relative phase difference FIG. 3. Relative frequency difference() vs coupling strength
A ¢ in dependence on the coupling strengthfter an evo- ¢=0.0,...0.15. The solid line corresponds t8,=1.05, the
lution of 2500 time units folB,=1.05 (solid curve and B, dashed curve t@,=0.9.
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FIG. 4. Histogram of the relative cyclic phase differeriégvs 0.00 0.05 0.10 0.16 0.20
coupling strengttc. The left plot corresponds t8,=0.9 and the c
right one tof,=1.05. The logarithm of the bin contentis plotted in FIG. 5. Linear correlation coefficient vs coupling strength
gray scale. ¢=0.0,...,0.15. The solid line corresponds t6,=1.05, the
dashed tg3,=0.9.
Ap=y(x,t) = p,(X,t) e[ — 7, 7], (7)

. =1.05(solid line) and 8,= 0.9 (dashed ling At the onset of
with ¢ = ¢;mod 2 e S* (unit circle) [15]. For FS it is suf-  PS atc=0.11 (0.07) the amplitude patterns are totally un-
ficient to observe a sharp peak in the phase distributiongorrelated, see Fig.(d). Increasing the coupling strength in-
which implies that the systems have at almost all time thejuces stronger correlations and for strong coupling the dy-
same mean frequency. Additionaly, to detect perfect Piamics become very similar, but not equal because the
(without phase slipsit is necessary that the histogram of the systems are nonidentical and therefore a synchronization
cyclic phase differences has support on a proper subset gfanifold u=v does not exist. While due to the parameter
the circle with diameted({A¢})<2, i.e., a gap in the mismatchB,+# 3, identical synchronization is not possible; a
histogram appears and phase slips no longer dddéjr Fig-  functional relationship betweamandv may exist, i.e.gen-
ure 4 shows the histogram of the cyclic phase differences foeralized synchronizatiofGS) may occur[17]. A necessary
the two examined regimes. We have plotted the logarithm otondition for GS is that all tranversal Lyapunov exponents
the bin contents to be able to observe the first occurrence afre negative\"#*<0 [18]. To check this we computed the
the gap. Without couplin@m is distributed equally on largest transversal Lyapunov exponents of the driven system
[ — o, 7r]. For small coupling: a (not very sharpmaximum  for several coupling strengthsand both examined param-
in the histogram appears showing the tendency of the sys-
tems for synchronizing their phases/frequendiest clearly 0.10 7]
visible with gray scaling used in Fig,)4At the onset of FS
the histogram becomes sharper but covers still the whole
circle [ —, 7], which indicates the occurrence ¢fare
phase slips. A gap appears in the left plg,€0.9) for c 4
=0.07 and in the right@,=1.05) forc=0.11, exactly atthe =~
onset of PS, see Fig. 2 and E§). Further increasing of the
coupling strengtlt leads to a histogram with a delta peaklike
function around a fixed value.

Now we want to examine how similar the amplitude pat-
terns|ul,|v| are in the phase synchronized regime.

To compare the two patterns quantitatively we have cal-
culated the linear product-moment correlation coefficignt
(or Pearson’s )

(@)

0.08 -

> (luil=u)(Jvi]—v)

S S e

whereu,v are the mean values ¢fl|,|v]|, respectively and -0.02 | . SN\
—1<y=<1. A value near 0 indicates that the data are lin- 0.00 0.02 0.04 0.06 0.08 0.10
early uncorrelated; foy=1 we have complete positive cor- ¢

relation and fory=—1 the data are negatively correlated.  F|G. 6. The largest transversal Lyapunov exponants's cou-
Figure 5 shows thélinean correlation between drive and pling strengthc. (a) B,=1.05, c=0.0,...,0.15, (b) B2=0.9,
response pattern against the coupling strengtfor B, ¢=0.0,...0.1.
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eter sets. Figures(&,b show the spectrum of the driven eter c the frequencied},, synchronize while rare phase

GLE (1) for B,=1.05 (8,=0.9). At the onset of PS for  slips are still observed. Slightly above this threshold the rela-
=0.11 (c=0.07) we have still sixsix) positive Lyapunov tive phase differences ¢ also remain bounded and PS with-

exponents and no GS. For=0.15 (c=0.09) all transversal out any phase slips occurs. Another test for PS, the histo-
Lyapunov exponents are negative indicating GS. This transigram of the relative cyclic phase differences, confirms the
tion is accompanied by a sharp increase of the linear corrgesylts. For strong coupling all transversal Lyapunov expo-
lation coefficienty, which is another indication of a fixed pents are negative and the patterns are highly correlated,

relation between the flows. which indicates the presence of generalized synchronization.
In this paper we have demonstrated the occurrence of spa-

tiotemporal phase synchronization in a system consisting of We thank L. Kocarev for stimulating discussions on
two unidirectionally coupled Ginzburg-Landau equationschaos synchronization and the DRBa 643/1-1 and W.
(1). Above a certain threshold value of the coupling param-Lauterborn for support.
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