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Phase synchronization of coupled Ginzburg-Landau equations
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~Received 6 October 1999!

The occurrence of phase synchronization of a pair of unidirectionally coupled nonidentical Ginzburg-Landau
equations is demonstrated and characterized using cyclic and extended phases. Furthermore, it is shown that
weak coupling first leads to frequency synchronization and later to phase synchronization. For strong coupling
there is evidence for generalized synchronization.
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Synchronization of periodic signals is a well-known ph
nomenon in science and engineering. However, even cha
systems may be linked in a way such that their chaotic
cillations are synchronized@1–3#. If a pair of very similar or
even identical systems is coupled one may observeidentical
synchronizationwhere the difference of the state vectors
both systems converges to zero, even in the case of ch
dynamics. Such synchronization phenomena may not onl
observed for low-dimensional systems but also for spati
extended dynamics@4–6#. Identical synchronization, how
ever, can only occur for pairs of identical systems but not
coupled systems that are of completely different origin~e.g.,
an electrical circuit coupled to a mechanical system!. What
does ‘‘synchronization’’ mean in such a more general ca
Periodic systems are usually called synchronized if eit
their phases or frequencies are locked. For chaotic syst
however, the notions of ‘‘frequency’’ or ‘‘phase’’ are in gen
eral not well defined, except for some class of chaotic s
tems where a phase variable can be introduced and ch
phase synchronization~PS! may be observed@7#. Since~cha-
otic! PS turned out to be a rather robust phenomenon it
also observed with binary coupling@8# and in noisy environ-
ments like magnetoencephalography measurements@10#. In
data analysis~statistical! evidence for PS is used to evalua
possible coupling between different physical processes l
for example, the solar activity cycle~sunspot numbers! with
the solar inertial motion@11#. Recently PS of spatiotempora
chaos under harmonic forcing was observed and analyze
Chatéet al. @12#. In this paper we demonstrate that PS m
also occur with spatiotemporal chaos of coupled nonident
partial differential equations~PDEs!. As an example we have
chosen a pair of unidirectionally coupled Ginzburg-Land
equations~GLEs!,

]u

]t
5u2~12 ia!

]2u

]x2
1~11 ib1!uuu2u, xP@0,L#,

~1!
]v
]t

5v2~12 ia!
]2v

]x2
1~11 ib2!uvu2v1c~u2v !,

with periodic boundary conditions. The GLE is a fundame
tal model for structure formation@13#. Depending on the
parametersa andb defect turbulenceor phase turbulenceof
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the complex variableu may occur resulting in spatiotempora
chaotic dynamics. In our investigations the parameters of
driving systema52.0 andb150.7 are chosen to be in th
phase turbulent regime@see Fig. 1~a!#. In order to study non-
identical systems we have chosen for the response system
samea value but differentb values.b250.9 results in more
turbulent phase dynamics andb251.05 leads to defect tur
bulence@see Fig. 1~b!#. All calculations were performed for a
fixed system lengthL5100. The PDE was solved using a
implicit scheme that is second order in space and first or
in time.

To examine PS one has to find a suitable quantity t
represents a phase of the system and that usually corresp
to a zero Lyapunov exponent. Even in low-dimensional s
tems this is often a nontrivial problem. The advantage
using the GLE is that we have a complex variable that allo
us to use polar coordinates with a unique phase defini
f(x,t)PR. The coupled systems~1! are regarded as phas
synchronized@10# if their phase difference is bounded from
above@14#:

ufu~x,t !2fv~x,t !u,const; ;xP@0,L#,;t.T, ~2!

whereT denotes the transient time. The mean frequency
the system can be defined as

V5 lim
t→`

^f~x,t !&x

t
, ~3!

where ^ &x is the spatial average. PS implies that the f
quency mismatch

DV5Vu2Vv50 ~4!

of the mean frequenciesVu andVv vanishes and frequenc
synchronization~FS! occurs. We want to stress that the o
posite is in general not true because of possible~rare! phase
slips where the relative phases change rapidly by62p.
When a coupling parameter of the systems is changed
often observes a scenario where first the mean frequen
synchronize~FS! and later PS occurs~i.e., all phase slips
disappeared!. Note that we consider here extended pha
f(x,t) on the whole real axisR for diagnosing PS, becaus
we are interested in the long term evolution of the pha
difference.
438 ©2000 The American Physical Society
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To have a quantitative measure for PS in spatially
tended systems we compute the maximum relative phase
ference of the extended phasesfu,v ,

Df5 max
xPL,T<tPR

ufu~x,t !2fv~x,t !u. ~5!

After a transient timeT, we set the initial phase difference t
ufu(x,0)2fv(x,0)u<p @9# and with perfect PS the phas
differenceDf will not exceed the bound of 2p.

Figure 2 shows the maximum relative phase differen
Df in dependence on the coupling strengthc after an evo-
lution of 2500 time units forb251.05 ~solid curve! andb2

FIG. 1. Amplitude dynamics of the coupled Ginzburg-Land
equations:~a! drive b150.7, ~b! response systemb251.05 without
coupling, ~c! weak coupling ofc50.11, beginning of phase syn
chronization,~d! strong coupling ofc50.2, strong correlation of
the amplitude patterns.
-
if-

e

50.9 ~dashed curve!. The dotted line shows the bound 2p
for PS. The phase difference decreases continuously fo
creasing coupling strengthc. For the caseb250.9 ~phase
turbulence! a transition to PS occurs atc50.07 and with
b251.05 ~defect turbulence! the onset of PS is atc50.11.
For visualization Fig. 1 shows the evolution of the amplitu
dynamics of~a! the driving systemb150.7, ~b! the response
b251.05 without coupling,~c! at the onset of PS, and~d! for
strong coupling. Note, that in Fig. 1~c! both PDEs are phas
synchronized while the amplitudes are totally uncorrelat
For strong coupling, see Fig. 1~d!, even the amplitude pat
terns become similar to each other.

Figure 3 shows the average frequency mismatch Eq.~3!
against the coupling strengthc. As expected PS implies FS
and we observe a locking of the frequencies before per
phase locking is observed:

b250.90: c>0.06⇒FS, c>0.07⇒PS,
~6!

b251.05: c>0.10⇒FS, c>0.11⇒PS.

In this intermediate regime we observed phase slips that
long mainly to defects, but they occur so seldom that th
have a negligible effect on the mean frequencyV2.

An alternative way for detecting phase synchronizat
@10,11# is to look for a pronounced peak in the distribution
the relative cyclic phase difference,

FIG. 2. Relative phase difference~5! vs coupling strength
c50.0, . . .,0.15. The solid line corresponds tob251.05~defect tur-
bulence!, the dashed curve tob250.9 ~phase turbulence!. Below
the dotted line the phase difference is less than 2p, which corre-
sponds to phase synchronization.

FIG. 3. Relative frequency differenceDV vs coupling strength
c50.0, . . .,0.15. The solid line corresponds tob251.05, the
dashed curve tob250.9.
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Df̃5f ũ~x,t !2f ṽ~x,t !P@2p,p#, ~7!

with f ĩ5f imod 2pPS1 ~unit circle! @15#. For FS it is suf-
ficient to observe a sharp peak in the phase distribut
which implies that the systems have at almost all time
same mean frequency. Additionaly, to detect perfect
~without phase slips! it is necessary that the histogram of th
cyclic phase differences has support on a proper subse
the circle with diameterd($Df̃%),2p, i.e., a gap in the
histogram appears and phase slips no longer occur@16#. Fig-
ure 4 shows the histogram of the cyclic phase differences
the two examined regimes. We have plotted the logarithm
the bin contents to be able to observe the first occurrenc
the gap. Without couplingDf̃ is distributed equally on
@2p,p#. For small couplingc a ~not very sharp! maximum
in the histogram appears showing the tendency of the
tems for synchronizing their phases/frequencies~not clearly
visible with gray scaling used in Fig. 4!. At the onset of FS
the histogram becomes sharper but covers still the wh
circle @2p,p#, which indicates the occurrence of~rare!
phase slips. A gap appears in the left plot (b250.9) for c
50.07 and in the right (b251.05) forc50.11, exactly at the
onset of PS, see Fig. 2 and Eq.~6!. Further increasing of the
coupling strengthc leads to a histogram with a delta peaklik
function around a fixed value.

Now we want to examine how similar the amplitude p
ternsuuu,uvu are in the phase synchronized regime.

To compare the two patterns quantitatively we have c
culated the linear product-moment correlation coefficieng
~or Pearson’s r)

g5

(
i

~ uui u2ū!~ uv i u2 v̄ !

A(
i

~ uui u2ū!2A(
i

~ uv i u2 v̄ !2

, ~8!

where ū,v̄ are the mean values ofuuu,uvu, respectively and
21<g<1. A value near 0 indicates that the data are l
early uncorrelated; forg51 we have complete positive co
relation and forg521 the data are negatively correlate
Figure 5 shows the~linear! correlation between drive an
response pattern against the coupling strengthc for b2

FIG. 4. Histogram of the relative cyclic phase difference~7! vs
coupling strengthc. The left plot corresponds tob250.9 and the
right one tob251.05. The logarithm of the bin content is plotted
gray scale.
n,
e
S

on

or
f
of

s-

le

-

l-

-

51.05~solid line! andb250.9 ~dashed line!. At the onset of
PS atc50.11 (0.07) the amplitude patterns are totally u
correlated, see Fig. 1~c!. Increasing the coupling strength in
duces stronger correlations and for strong coupling the
namics become very similar, but not equal because
systems are nonidentical and therefore a synchroniza
manifold u[v does not exist. While due to the paramet
mismatchb1Þb2 identical synchronization is not possible;
functional relationship betweenu andv may exist, i.e.,gen-
eralized synchronization~GS! may occur@17#. A necessary
condition for GS is that all tranversal Lyapunov expone
are negativel'

max,0 @18#. To check this we computed th
largest transversal Lyapunov exponents of the driven sys
for several coupling strengthsc and both examined param

FIG. 6. The largest transversal Lyapunov exponentsl' vs cou-
pling strength c. ~a! b251.05, c50.0, . . .,0.15, ~b! b250.9,
c50.0, . . .,0.1.

FIG. 5. Linear correlation coefficient vs coupling streng
c50.0, . . .,0.15. The solid line corresponds tob251.05, the
dashed tob250.9.
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eter sets. Figures 6~a,b! show the spectrum of the drive
GLE ~1! for b251.05 (b250.9). At the onset of PS forc
50.11 (c50.07) we have still six~six! positive Lyapunov
exponents and no GS. Forc50.15 (c50.09) all transversa
Lyapunov exponents are negative indicating GS. This tra
tion is accompanied by a sharp increase of the linear co
lation coefficientg, which is another indication of a fixed
relation between the flows.

In this paper we have demonstrated the occurrence of
tiotemporal phase synchronization in a system consistin
two unidirectionally coupled Ginzburg-Landau equatio
~1!. Above a certain threshold value of the coupling para
-

ica

a

ys

ett
.

ev

, J
tt
i-
e-

a-
of

-

eter c the frequenciesVu,v synchronize while rare phas
slips are still observed. Slightly above this threshold the re
tive phase differencesDf also remain bounded and PS with
out any phase slips occurs. Another test for PS, the hi
gram of the relative cyclic phase differences, confirms
results. For strong coupling all transversal Lyapunov ex
nents are negative and the patterns are highly correla
which indicates the presence of generalized synchronizat
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